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J. Phys. A: Math. Gen. 19 (1986) 91-105. Printed in Great Britain 

Quantum mechanics in coherent algebras on phase space 

B Lesche and  T H Seligman 
Instituto de Fisica, UNAM Apdo. Postal 20-364, 01000 Mexico, DF, Mexico 

Received 30 August 1983, in final form 29 May 1985 

Abstract. Quantum mechanics is formulated on a quantum mechanical phase space. The 
algebra of observables and states is represented by an algebra of functions on phase space 
that fulfills a certain coherence condition, expressing the quantum mechanical superposition 
principle. The trace operation is an integration over phase space. In  the case where the 
canonical variables independently run from -x to +CC the formalism reduces to the 
representation of quantum mechanics by Wigner distributions. However, the notion of 
coherent algebras allows to apply the formalism to spaces for which the Wigner mapping 
is not known. Quantum mechanics of a particle in a plane i i i  polar coordinates is discussed 
as an example. 

1. Introduction 

The desire to describe quantum mechanics on phase space is almost as old as quantum 
mechanics itself. First steps in this direction were made by Wigner [ l ]  and later 
Groenewold [ 2 ] ,  Moyal [3] and others have contributed to the subject. References 
[4-61 summarise the state of this development. Wigner constructed a mapping that 
allows us to map the structure of Hilbert space quantum mechanics on a corresponding 
structure on phase space. The inverse mapping was given by Weyl in an  earlier work 
[7] without a discussion of quantum mechanics on phase space. However, this mapping 
is only known for the case where the canonical variables independently run from --OC 

to +a. 
In this paper a formulation of quantum mechanics on phase space is presented 

that does not start from a relation to a Hilbert space formulation. Therefore our 
formalism easily extends to phase spaces with more complicated topologies, e.g. a 
cylinder, for which a Wigner mapping is not known. On the other hand, once we have 
a quantum mechanics on a phase space with a given topology, a relation to a Hilbert 
space formalism is obvious. Thus, afterwards one gets Wigner mappings for compli- 
cated topologies almost automatically. 

Instead of representing states and observables by operators on Hilbert space we 
represent them by functions on a phase space. We define a non-commutative product 
for these functions so that we can find the algebra of quantum mechanics among 
functions on phase space. In our formalism this algebra is realised by a set of functions 
that fulfills a certain coherence condition. This condition corresponds to the superposi- 
tion principle in Hilbert space quantum mechanics. The notion of coherent algebras 
will be decisive in extending the theory to complicated phase spaces. 

In $ 2 we introduce an  associative but non-commutative product based on 
exponentiation of the Poisson operator. Section 3 shows how quantum mechanics on 
phase space can be guessed from classical mechanics. Thereby coherent algebras are 
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introduced. Section 4 shows that our result in Ut2" is equivalent to Weyl-Moyal 
quantisation. For identical bosons we discuss the 'reduction of phase volume' from 
the coherent algebra point of view. In 0 5 we apply the technique of coherent algebras 
to formulate quantum mechanics of a particle in a plane using polar coordinates as 
canonical variables. 

2. The * product 

Let q,, pl;  i = 1,. . . , n be Cartesian coordinates of the 2n-dimensional space R2". The 
differential operator 

can be used to write a Poisson bracket if one identifies the q's and p ' s  with canonical 
coordinates of a mechanical system 

{ A ,  B }  = APB. (2) 

We define the kth power of 9 as follows 

a a a  a Bk = 1 . . . .- - - 
1 ,  ... 1k ax,, ax,, axj, ax,, 

. . .  (3) 
I I  J k  

where x, = 9,; x,+, = p,; i n and E,, = f i t ( , - , , -  f i r ( ,+ , , ) .  The structure (R'", 9) can be 
identified with a classical phase space. On the other hand, the space of coordinates 
ql, p r  together with the entirety of all powers 9, B', . . . i.e. the structure (Ut2,, 9, P2,. . . ) 
does not permit such an interpretation. B is invariant under canonical transformations 
whereas Bk, k >  1 is not unless the transformation is linear. The powers of 9 serve 
to define the following product of functions on R2" (cf [2]): 

Two functions A, B are multiplied by applying the * operator between A and B ;  A * B. 
We will call the structure (R2", *) the quzntum mechanical phase space. In this work 
we will not define the class of functions that can be multiplied with this * product. 
We assume analytic properties and occasionally we will also multiply some distributions 
with due care. 

Despite the fact that B only satisfies a Jacobi identity the * product turns out to 
be associative: 

( 5 )  

This identity has been proved by Plebanski [8] in a way that is independent of any 
relation to corresponding Hilbert space structures. 

The * product is not commutative. The odd-power contributions of ( $ W )  change 
their sign on exchange of factors. On the other hand an  odd power of i is imaginary. 
Therefore one has 

A * B = B * A  ( 6 )  

A * ( B  * C )  = ( A  * B )  * C. 
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- 
where denotes complex conjugation. Thus, complex conjugation is an  adjoining 
operation with respect to the * product. The product and complex conjugation form 
the basic elements to define the structure of a star algebra on the set of functions on 
R2". One could investigate an  adequate norm and restrictions on the functions in order 
to obtain a C* algebra. However, we are more interested in obtaining the algebra of 
quantum mechanics, the corresponding dynamics, and trace operation. Indeed the 
commutators of p ' s  and q's calculated with respect to the * product 

c q,, P k  1 = i hslk [ P h  P k l =  [4 / ,  % I =  0 (7)  

suggest that functions on  the quantum mechanical phase space algebraically behave 
like quantum theoretical operators on Hilbert space. 

Let us consider h a continuously varying parameter rather than a constant. If the 
functions A, B d o  not depend on h one has for h + 0 

A * B - + A B  (8) 

In this sense the classical phase space is the limit of the quantum mechanical one. 
Therefore the phase space formulation is especially suited to study relations between 
the quantum theory and  its classical limit. 

3. Quantum mechanics on phase space 

Quantum theory is more than a mere algebraic structure. A physical theory should 
contain rules that tell us how physical objects like states, observables, spectra, dynamics 
and  expectations are represented by mathematical objects. These relations between 
physical and mathematical objects cannot be deduced from an  algebraic structure. 
However, we will see that the algebra together with the correspondence principle give 
sufficient hints to permit an adequate guess. 

In classical statistical mechanics states are represented by real functions on phase 
space that fulfil the restrictions 

p(q,  p )  d f l =  constant d f l  = dq ,  . . . dq, dp ,  . . . dp, (10) 

(11) 

These conditions are not independent of the algebraic structure of phase space. They 
have to be compatible with the dynamics, which is formulated with the algebraic 
structure. So, if one requires that all state functions are real, positive and have the 
same integral then these properties have to be conserved under time evolution. These 
restrictions are in fact compatible with the classical dynamics 

J 
P(4 .  P) 3 0. 

d P l d t  = { H ,  P I  (12) 
because the change in time of p according to (12) corresponds to a measure preserving 
motion of phase points. The simplest guess for a dynamics on (R'", *) that for h + 0 
goes into the classical (12) is 

dp /a t  = ( l / i h ) (  H * p - p * H ) .  (13) 
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This, of course, is nothing but the von Neumann equation. What conditions can we 
put on the functions p assuming the * dynamics, equation (13)? Because of (6) we 
can still assume p to be real if H is real, and also restriction (10) is still compatible 
with (13), which follows from the theorem below. 

Theorem 1. Let A and B be two functions on R2“ such that one of them with all its 
derivatives vanishes at infinity so that all products of the type (dkA/d.x,, . . . ax,,) 
( a k B / d x j ,  . . . axj i )  vanish at infinity, then I A * B d R  = j AB d o .  

Proof: One has A * B = AB+E:=l ( l /k ! )A($ihB)kB.  Each term of the sum I;=, can 
be written as a sum of Poisson brackets of derivatives of A and B. Liouville’s theorem, 
or simply partial integration, then shows that the term does not contribute to the 
integral A * B diL. 

Theorem 1 does not imply that J A * B * C d R  and ABC d R  coincide. However, 
it follows that factors may be permuted cyclically under the integral 

A * B x C d R =  C * A * B d R .  (14) 

Equation (13) and theorem 1 imply that p (  q, p ,  t )  d R  is constant in time. Classically 
this constant U = J p dR can be chosen arbitrarily. All expectations of observables 

c 5 

a ‘ 1  (A) ,=-  Ap d R  (15) 

are invariant under a change of cy, and the restrictions (10) and (1 1) do  not fix a either. 
I[ is one of the most striking aspects of the quantum mechanical phase space that its 
algebraic structure is suited to fix the value of cr. The origin of this normalisation of 
phase space volume is the quantum version of restriction (1  l ) ,  which we are now going 
to formulate. 

One can show with the aid of counterexamples that restriction (1  1)  is not compatible 
with * dynamics. This is because (13). unlike its classical analogue, does not describe 
a motion of phase points. In  the classical theory phase points describe pure states 
p(q ,  p )  = a6(q  - ( ) 6 (  p - 7 )  and a general state is a (possibly infinite) convex linear 
combination of such pure 6 states. In * mechanics pure states can no longer be 
associated with phase points. In order to be consistent with restriction (10) the set of 
functions representing pure states of * mechanics should consist of functions that all 
have the same integral. One can obtain such a set with the help of algebraical conditions. 

Let d be an  algebra with respect to the * product, i.e. a linear space of functions 
that is closed under the * product, A, B E  d + A  * B E  d. A real function P E  d will 
be called pure in d if for any real F E  d the equation P * F = F is equivalent to saying 
that F and P are proportional, F = cP, c E [W. 

V F = F E &  ( P -  F = F @ F = c P ) .  (16) 
The backward implication ‘e’ tells us that P is idempotent, P * P = P, and the forward 
implication ‘=+’ tells us that P is minimal, i.e. it cannot be written as a sum of idempotent 
real functions. 

We call an algebra d coherent if ( i )  there exist pure functions in si! and (ii) for 
any pure functions P,, P2 E & there exists a pure function P3 E s4 such that P, * P3 # 0 
and P2 * P3 f 0. In condition ( i )  one may include a completeness requirement stating 
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that the identity of the algebra U,d can be resolved by pure functions. However, this 
is not important for our present purposes. 

The following theorem tells us that the pure functions of a coherent algebra are 
good candidates to represent pure states because they already fulfil condition (10). 

Theorem 2. If d is a coherent algebra whose pure functions fulfil the condition of 
theorem 1 then all pure functions in i7p have the same integral l P d R  =constant. 

Proof: Let P I ,  P 2 e  d be two arbitrary pure functions. We choose a pure function 
P3 E d such that PI * Pj # 0 and P2 * P3 # 0. The function PI * P3 * PI is a real element 
of d and complies with 

PI * ( P I  * P3 * P I )  = ( P I  * P3 * P I )  (17 )  

where we used that pure functions are idempotent. According to the definition of pure 
functions this implies 

PI * Pj * PI = C,P,. (18) 

In the same way one gets 

P3 * PI * P, = c3P3. 

One can combine (18) and  (19) as follows 

CjPI * P3= PI * P, * PI * P,= c,P, * P3 

which means c3 = c,. As P, is idempotent one gets using theorem 1, (61, and  PI * P3 # 0 
the following inequality 

P, * P3 * PI d R  = ( P I  * P3)( P3 * P I )  d R  = 1 PI * P312 dR > 0 1 1 
and thus c ,  f 0. Then, applying theorem 1 and  idempotence one gets 

The same argument can be repeated with P2 so that one finds 5 P, dR = P2 d R  = l Pz dR.  

Let us assume we have a coherent algebra d as required in theorem 2 ,  and suppose 
that the Hamiltonian H of (13) is a real element of d. The solution of (13) has the form 

(23)  p (  t )  = U ( [ )  * p ( 0 )  * uo 
where U is a unitary function in d, i.e. a function such that 

U *  o = o *  u=l,d 

where TI,$ is the unit element in d. It  is readily seen that U * P * 0 is pure in d if 
and only if P is pure, provided U is unitary in d. That means that pure functions of 
a coherent algebra d o  not only fulfil condition ( IO) ,  they also form a set that is invariant 
under * dynamics. 
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Therefore we assume that our quantum theory is associated with a coherent algebra 
d. All states and observables and  especially the Hamiltonian H should be elements 
of d. The pure functions of si' represent the pure states of the system and a general 
state will be a (possibly infinite) convex linear combination of pure states 

where p k  are pure functions. The condition c k  3 0 in (25) replaces the classical condition 
(11). 

The postulate that pure functions belong to the class of functions that represent 
states fixes the normalisation of phase volume 

a = {  P d R  P any pure function in d. 

Later we will find that the full algebra of (sufficiently well behaving) functions on Rz" 
is a coherent algebra and  the normalisation is found to be a = h". 

If PI, Pz are pure states and  P3 is a different pure state with PI * P3 Z 0 and Pz * P3 f 0 
and (PI + P z )  * P3 = P3 then P3 is called a coherent superposition of P, and Pz. The 
coherence condition for the algebra is the quantum mechanical superposition principle. 
There are cases where this principle does not apply, namely in the presence of superselec- 
tion rules. In such a case one simply has to consider a direct sum of several coherent 
algebras. 

States and  dynamics are now formalised. It remains to find a representation of 
observables, expectations and spectra. In classical mechanics observables are represen- 
ted by real functions on phase space. Let us take this over to * mechanics with the 
requirement that the corresponding functions are elements of the algebra d. The fact 
that restriction (10) could be taken over to quantum theory suggests that the expectation, 
which classically is an  integral of the product of state and observable, also in quantum 
theory is an  integral of a product of A and  p: 

(A),=:{ A * p d R .  

According to theorem 1 we may even drop the star and use the classical product, so 
that (A), precisely takes the classical form of (15), however, a is no longer arbitrary 
(equation (26)). 

The spectrum of an  observable is the set of experimental outcomes which can show 
up  in a single experiment with arbitrary state. Classically the spectrum coincides with 
the range of the function A that represents the observable 

S P d a s s  A = {A(% P) I(4, P I  E R2"1. (28) 

This set can also be described in the following way. A real number A is an element 
of Spclase.A if and  only if one can find a sequence of (classical) states E?)  so that 

{ ( A - A ) * E y ' d R + O  i fn+co .  

A natural extrapolation of this definition to quantum theory would be to replace 
products by star products: a real number A is an  element of SpA if and only if one 
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can find a sequence of (quantum) states E:) so that 

( A - A )  * ( A - A )  * E ' k ' d R + O  i f n + m .  (30) I 
It may happen that for certain values of A one can find a constant sequence E r )  = P ( A ) .  
In this case A is said to belong to the discrete spectrum of A and P ( A )  is an eigenstate 
of A. If A E SpA is not of the discrete spectrum the sequence E r  is said to represent 
a generalised eigenstate of A. 

In an eigenstate of A the observable A has zero variance 
2 1 / 2 =  A * p = Ap. (31) ( ( A  * A),  - ( A ) , )  0 

For example the function 

is pure in the full algebra on R2 and i t  is an  eigenstate of the observable 

H = p 2 / 2 m  +$mw2q' .  (33) 

H * p = i h w p .  (34) 

One has 

The sequence of pure states 

n = 1,2 ,  . . . (35) 
p ' / n m w  + n m w ( q  - A ) 2  

h 
represents a generalised eigenstate of q :  

4 * {PF?, = A { P Y ) I w  (36) 
In the following section we will discuss the connection of the phase space formalism 

with the usual Hilbert-space formulation of quantum mechanics. It will turn out that 
functions on phase space correspond to operators on Hilbert space. So for example 
p corresponds to the density operator p^. The reader accustomed with Hilbert-space 
quantum mechanics might thus be surprised about the form of eigen equations in 
phase space. Note, however, that the eigen equation 

obviously remains unchanged by multiplying it with (41 

which then may be written as 

fils) = El$) (37) 

fil+)($l= El4)(4l (38) 

fip  ̂= Ep^, (39) 
which is an eigen equation for the density operator rather than for a Hilbert space vector. 

4. Coherent algebras on R2" and Hilbert space quantum mechanics 

Theorem 3. Let 4 = $(x , ,  . . . x,) be a complex distribution on R"  with J 1 $ 1 2  dx,  . 
dx, = 1. The distribution 

is pure in the full algebra 9 of distributions on z2". 
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The proof of theorem 3 is facilitated by the following formula 

7 
A(q)  ~ ~ ~ ( ~ E P I Y I )  * B ( q )  e x p ( k x p , x , )  = A ( q + x ) B ( q - y )  e n p ( ~ ~ p ~ ( X ' T y 1 ) ) .  

(41) 

Proof of theorem 3. P* is real because f(y) = $ ( q - y ) $ ( q + y )  fulfills the condition 
f(y)=f(-y). We show that Ph is idempotent. Equation (41) gives 

J (  q - y + x ) $ ( 4 + Y + x 1 J (  4 - x - y 1 $ ( q + x - Y ) 

Introducing new variables of integration f = x + y, t'  = x - y 
dt; = 1 gives P$ * P+ = PF It remains to show that P* * F = F 
real F. Let F with F = F and P* * F = F be given. We write 

. . .  

Then P* * F = F gives together with Fourier's theorem 

dx,. 

dyn 

and  using 5 /$I' dt' ,  . . . 
implies P = cF for any 

(43) 

The integral is invariant under the transformation q + q + t" ,  t -+ t + t". Thus f( q, t )  has 
the form 

f ( q ,  t )  = $ ( q  + t ) J ( q  - t ) .  (46) 

The condition that F is real implies f ( q ,  t )  = f ( q ,  - t ) ,  which means 

cL(q + t).Qq - t )  = 444 - t ) J ( q +  t ) .  

~ ( z )  = ( J ( y ) / $ ( . v ) ) J ( z )  = constantx J ( z ) .  

(47) 

Let y be a vector such that + ( y )  # 0. Now choose q and t so that q - t = y and q + t = z 

(48) 
This means F = 2-" x constant x P& 
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Up to a factor P* is a Wigner function [ I ] .  If $'(XI,. . . , xn) ,  t,b2(xl,. . . , x,) are 
dx ,  . . . dx, = 1, [ (t+bzi' dx,  . . . dx, = 1 the integral of P$l * P*2 is two functions with 

J" p*l * p*2 dQ 

= J" p*lp*2 d Q  

This equation determines the normalisation constant a. Choosing 6, = one gets 

a = h". (50) 

Moreover (49) shows that the set of pure functions of theorem 3 fulfills the coherence 
condition. In order to show that the full algebra 9 of (well behaving) distributions 
is coherent one would have to demonstrate that all pure functions are of the form 
given by theorem 3. However this is clear from the following obvious connection with 
a Hilbert space structure. 

If we take CC, as the wavefunction of Hilbert space quantum mechanics we can write 
Pb as 

By linear superposition of these equations with different /9)($/ 's  one gets the state 
functions p that correspond to an  arbitrary density operator 6. The resulting correspon- 
dence between operators and  functions on R2" can then be generalised to a wider class 
of operators 

The correspondence W: A H A  is the Wigner mapping. Its inverse W-':  A H A  is 
known as the Weyl-Moyal quantisation [3 ,7 ] .  One can show [4,8] that 

n 
A * B = A S .  (53) 

That means that the Wigner mapping is an  algebraic isomorphism. In order to show 
the equivalence of phase space and Hilbert space qu?ntum mechanics i t  only remains 
to show that for any self-adjoint traceless operator A one has 

(54) 

We have already shown (54) for operators of the form a = I t+b) ($ l .  As any trace class 
operator can be written as 2 ,  an14n)($nl, C, la,, <CO one gets the general case by 
linearity and continuity. 
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Finally we would like to discuss a case where d is not the full algebra of distribu- 
tions. Suppose we want to describe a system of N identical Bose particles. Let us 
denote the 6 N  coordinates by q : ,  q:, . . . p x  or q , ,  . . . , prv The phase space function 

is real and idempotent, where we define the * product for 8 functions with the help 
of (41), writing 6 ( p ,  - p , ( , , )  as a Fourier integral. S has the spectrum { O ,  1). The set 
of eigenfunctions A with eigenvalue 1, S * A = A, is invariant under * multiplication. 
We take this space 93 as the algebra for our quantum theory. The Hamiltonian H 
should be an  element of 3. Then H will not coincide with the classical function, 
which one would use intuitively. H is the projection of the classical Hamiltonian HcI 
into the algebra 93 

H = S * H,, * S. ( 5 6 )  

Let us investigate the classical limit of the partition function Z .=-I 1 e -OHdn  
h 3 N  i/l 

( 5 7 )  

e designates the exponential in 93. The exponential in an  algebra d is defined by 

d e x = U . + X + t X * X +  . . .  ( 5 8 )  

where 1Id is the identity in d. One has lg = 1 and U a  = S. Using (56), the fact that HcI 
and S commute and theorem 1 we get 

If one now takes the limit h + 0 for the integrand one sees that all terms in S which 
correspond to permutations CT different from the identity vanish and it remains 

z,, = ~ e-PH=Idfl. 
N ! h Z N  

The factor N !  is often referred to as the reduction of phase volume. Here it stems 
from the restriction of the algebra d. 

5. Polar coordinates as canonical variables 

In  9 2 we mentioned that the * product in general is not invariant under a change of 
canonical variables: 

A * B Z A * ' B  (61) 
with 
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Thus a single classical phase space corresponds to an infinite number of different 
quantum mechanical phase spaces. Nevertheless, two different quantum mechanical 
phase spaces may serve to represent the same quantum system in such a way that both 
representations have the same classical limit in a common classical phase space. If 
OA, 0, and 0, are observables that in the first space are represented by real functions 
A, B and C, these observables would be represented in the second space by real 
functions A’, E’ and C’ such that 

A = a B  * C +pC * B e A’= CUB’ *‘ C’+pC’ *’ B’ 
r r 

and 

A 
for h + 0. 

L 
A, Aclassical 

Although the representations are equivalent, the functions A and A’ may differ sig- 
nificantly. It can even happen that in the first space the physical algebra contains all 
well behaving functions whereas in the second space the coherent algebra is formed 
by a small subalgebra. Polar coordinates give an  example for this situation. 

Quantum mechanics of a particle that moves in a two-dimensional plane can be 
described in a phase space defining the * product with respect to the coordinates x, 
y ,  px ,  pv. In this case the coherent algebra is the set 9 that we introduced in § 4. Can 
the same quantum theory be represented if the * product is defined with respect to 
polar coordinates r = ( ~ ~ + y * ) ” ~ ,  cp =tan- ’  ( y / x )  and their conjugated variables pn 
pq? In fact it can. However the observables are then represented by distributions that 
form a small subalgebra iBpolar. The angular part cp, pu defines a cylindrical phase 
space. A coherent algebra with respect to the * product defined with cp and pq is 
formed by the functions 

t a r  

A(cp,p,)= 1 a l a r + k ( P o )  e x P [ i ( l - k ) ~ I  
l , k = - a  

where alk are arbitrary complex coefficients and  x,, is defined by 

if nh G 2 p  G ( n  + 2)h  
otherwise. 

Using the multiplication law 

a ( p )  exp(-iqk) * b ( p )  exp(-iqk’) = a ( p - ~ h k ’ ) b ( p + $ h k )  exp[-iq(k+k’)] (67) 

and x , ( p ) , y , ( p )  = 6, , ,yn(p)  for n + m even, one can show that functions of the type 
(65) multiply in the following way 

where *‘ indicates the star product that is defined with coordinates cp, r, p,, p F  

detailed discussion of quantum mechanics on the cylinder is found in [9]). 
From (68) it is clear that functions of the type (65) form a coherent algebra ( a  
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The radial part r, p r  defines a half-plane, on which a coherent algebra is given by 
the functions of the following type: 

with 

a ( r , x ) = O  if 1x1 > r. 

The pure functions of this algebra have the form 

with $ ( y )  = 0 if y < 0 and  J: I$(y)12 dy = 1. As the coordinate cp loses its meaning for 
r = 0 we cannot simply take the product of these algebras to define 2dPolar. For 5?polar 
we take functions of the type 

with 

aik( r, x)  = 0 if 1x1 3 r 

and with special conditions for functions with ~ ~ ~ ( 1 x 1 ,  x )  # 0, which we will give later. 
A Wigner mapping between apolar and operators on the Hilbert space 120L2(R+)  is 
given by 

Note that the normalisation of states in (72) is such that ( I ,  x /  k, y )  = &8(X - y )  and  
not ( I ,  x 1 k, y )  = ( l / x ) & S ( x  - y ) ,  which one might expect. 

Let us construct an isometric isomorphism between 9 with the * product and Bpolar 
with the *' product 

(73) 

in such a way that not only (62) and (63) are fulfilled but also (64). In  order to find 
this isomorphism we go from a given function A E  9 to an operator A over L2(R2) 
using the Weyl mapping (inverse of (52)). Then we conjugate with a unitary mapping 
U that takes us from L2(R2) to 120 L2(R+) and  finally we apply (72) to get A'(cp, r, pa,  p r ) .  
The unitary mapping U :  L2(R2) + 1'0 L2(R+) we choose such that it maps the wavefunc- 
tion $(x, y )  onto the wavefunction 

1: A(x, Y,  PX, P, 1 -A'(% r, Pa, P r )  

x S (  r2  - X' - ~ ' ) $ J ( x ,  y )  d x  dy I E H ,  r 2 0 .  (74) 

Conjugation with U, A'= UAU' as well as the Weyl mapping W - '  and the Wigner 
mapping Wpola, are isometric isomorphisms. Now define I so that the following 
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diagram commutes 

Operators on L~(R’) Operators on f’O L ~ ( R + )  

I 
conjugat~on with U 

I w - l  
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(75) 

I I J. 

9 ’ a p o l a r .  

We see that I is an  isometric isomorphism and  thus conserves the structure of quantum 
mechanics. So we obtain an equivalent representation of quantum mechanics of a 
particle in the plane in Bpolar. 

It remains to show that the classical limit of this representation is not only equivalent 
but identical with the orginal limit (i.e. (64) is fulfilled). Direct calculation shows that 
the observables that in 9 are represented by x, y ,  px ,  pY in Bpolar are represented by 

x’( $0, r, pc ,  Pr 1 = r cos cp 

Y’(cp, r, PV, Pr) = r sin cp 
(76) 

p:(cp, r, pV,  p , )  = p r  cos cp - ( 1 / 2 r ) (  P *‘ sin cp +sin cp * ’  P )  

pi , (  cp, r, pa ,  p , )  = p I  sin cp + ( 1 / 2 r ) (  P *’ cos cp +cos cp *’ P )  

where 

In the classical limit one has 

I p y  I 
, f p x  

P X  

Px PY 

yI 
X 
I 

, f py. f y  
Y‘ 

f X  
X’ 

As both * and *’ go into the classical limit, one concludes from the isomorphism ( 6 2 )  
that (64) is also true for * polynomials of x, y ,  p X ,  p,,. 

Finally we have to define which of the marginal elements with alk(lxl ,  x) f 0 belong 
to Edpolar. For physical reasons and  in order to have the isomorphism between 9 and 
gPolar we obviously want x’, y’, p : ,  p :  to be elements of 9polar. We may then take 
gpolar to be the algebra that is generated by these functions. The canonical variables 
cp, pV and p,. will not be in BPolar. 

The unitary mapping U :  L2(R2) + I * @  L’(R+) is the Hilbert space counterpart of 
the canonical transformation from Cartesian to polar coordinates. In this sense we 
could say that we found a unitary representation of this transformation. The transfor- 
mation from Cartesian to polar coordinates changes the topology and  the range of the 
coordinates. The standard technique to represent such transformations by unitary 
operators uses the concept of ambiguity spin [ l o ] .  

6.  Conclusions 

Following the ideas of Groenewold [2] we see that functions over the quantum 
mechanical phase space provide us  with the algebra of quantum mechanics. Adding 
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to this algebra the trace and  coherence condition, introduced in § 3, we recover the 
complete features of quantum mechanics. This last step, i.e. the coherence condition 
and its consequences, are the new features of this work. 

A brief comparison with some other approaches is in order. Essentially three lines 
of thought are usually followed when quantum mechanics on phase space is discussed. 

A first line follows Wigner and  obtains all relevant quantities from the Wigner map. 
This obviously yields a complete theory for R2" with Cartesian coordinates. For other 
manifolds and  other coordinates a Wigner map is not available. 

Next there is Groenewold's algebraic approach [2], which is well represented in 
[4 ,5] .  We consider that the present paper is consistently in this line and actually 
completes this method with the coherence condition. 

Finally Flato and co-workers [ 6 ]  have handled the problem as one of deformations 
of Lie algebras. On R'" they obtain the same results in a more general framework for 
the * product and they discuss quantum mechanics on other manifolds by embedding 
in larger spaces. They solve the problem of obtaining quantum mechanics on the 
cotangent bundle of an  n-sphere without introducing anything similar to the coherence 
condition. This approach differs from ours basically in that the * product on the more 
complicated manifold is not of the Groenewold type and that quantisation takes place 
always in R2"' and is then transferred to the smaller manifold. 

The general concept of deformed Lie algebras gives rise to a more general * product. 
Thus one could, e.g., choose 

Indeed most of our  arguments will follow through for this case, except for the 
definition of the trace which can only be given in analogy with the classical case if 
the Poisson operator is used. The reason for this is that the proof of theorem 1 makes 
explicit use of the Poisson operator. For other choices of * the definition of the trace 
becomes cumbersome and  the simplest way to define a trace may be to implement the 
unitary map between the algebras with * and by a procedure given by Lassner [ l l] .  

In this work we have not pursued mathematical rigour. We focused on describing 
the phase space representation in simple terms accessible to all physicists, trying to 
convince us that one obtains the same quantum mechanics as in Hilbert space. We have 
not clearly defined the set of distributions which are admissible for the physical algebra. 
Subtleties similar to the ones one gets in Hilbert space with unbounded operators 
should also occur in phase space, giving rise to interesting mathematical questions. 
These questions have to be answered separately for each * product depending on the 
chosen coordinate system. The tool for answering them will be the Wigner-Weyl 
mapping. 

It is surprising that relatively simple operators on Hilbert space, such as the 
permutation of particles or  the space inversion, correspond to 6 distributions on phase 
space (cf P 4). However, it turns out that these distributions can be multiplied with 
the * product. Here a detailed mathematical analysis has to be worked out, whereby 
interesting new issues could arise for distribution theory. 

In Q 3 we showed how the general framework of quantum mechanics can be guessed 
from classical mechanics. In this sense we have a quantisation method. In general, 
however, we d o  not have a quantisation in the sense of a mapping of classical 
observables to quantum observables. For example the representation of the quantum 
mechanical angular momentum in polar coordinates is a discontinuous function, which 
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does not coincide with the classical angular momentum. Only its classical limit does. 
Also the Hamiltonian in (13) does not have to be the classical one. So our formalism 
will in general not be a quantisation scheme in the sense of a quantisation mapping. 
It is an alternative representation of quantum mechanics, which may for some purposes 
(e.g. to study the classical limit) be more useful than the Hilbert space representation. 
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